Escape trajectories are deflected when fish larvae intercept their own C-start wake.
نویسندگان
چکیده
Fish larvae may intercept their own wake during sharp turns, which might affect their escape performance. We analysed C-starts of larval zebrafish (Danio rerio, Hamilton, 1822) using a computational fluid dynamics approach that simulates free swimming (swimming trajectory is determined by fluid forces) by coupling hydrodynamics and body dynamics. The simulations show that fish may intercept their own wake when they turn by 100-180°. During stage 1 of a C-start, the fish generates a strong jet at the tail that is shed into the wake. During stage 2, the fish intercepts this wake. Counterfactual simulations showed that wake interception increased the lateral force on the fish and reduced the fish's turning angle by more than 5°. Wake interception caused no significant acceleration tangential to the trajectory of the fish and did not affect total power output. While experimental and simulation evidence suggests that fish larvae can either undershoot or intercept but not overshoot their wake, our simulations show that larger fish might be able to avoid intercepting their wake by either under- or overshooting. As intercepting its own wake modifies the fish's escape trajectory, fish should account for this effect when planning their escape route.
منابع مشابه
Escape manoeuvres in damsel-fly larvae: kinematics and dynamics.
The kinematics and hydrodynamics of rapid escape manoeuvres executed by final-stage larvae of Enallagma cyathigerum were investigated using videography combined with a simple wake-visualisation technique. Two kinds of escape manoeuvres were identified: first, a 'rapid flex', comparable with the rapid C-start of fish, and, second, a 'rapid twist' that involves a helical contraction of the body i...
متن کاملDevelopment of the escape response in teleost fishes: do ontogenetic changes enable improved performance?
Teleost fishes typically first encounter the environment as free-swimming embryos or larvae. Larvae are morphologically distinct from adults, and major anatomical structures are unformed. Thus, larvae undergo a series of dramatic morphological changes until they reach adult morphology (but are reproductively immature) and are considered juveniles. Free-swimming embryos and larvae are able to pe...
متن کاملFlow patterns of larval fish: undulatory swimming in the intermediate flow regime.
Fish larvae, like many adult fish, swim by undulating their body. However, their body size and swimming speeds put them in the intermediate flow regime, where viscous and inertial forces both play an important role in the interaction between fish and water. To study the influence of the relatively high viscous forces compared with adult fish, we mapped the flow around swimming zebrafish (Danio ...
متن کاملThermal activation of escape swimming in post-hatching Xenopus laevis frog larvae.
Survival requires the selection of appropriate behavioural responses in the face of danger. With respect to the threat of predation, both the decision to escape and the underlying neuronal mechanisms have been extensively studied, but processes that trigger evasion of abiotic stressors, which are potentially hazardous to survival, are less well understood. Here, we document the interplay betwee...
متن کاملThe kinematics of directional control in the fast start of zebrafish larvae.
Larval fish use the 'fast start' escape response to rapidly evade the strike of a predator with a three-dimensional (3D) maneuver. Although this behavior is essential for the survival of fishes, it is not clear how its motion is controlled by the motor system of a larval fish. As a basis for understanding this control, we measured the high-speed kinematics of the body of zebrafish (Danio rerio)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 11 101 شماره
صفحات -
تاریخ انتشار 2014